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A mechanism for turbulent acceleration of parallel rotation is discovered using gyrokinetic theory. This

new turbulent acceleration term cannot be written as a divergence of parallel Reynolds stress. Therefore,

turbulent acceleration acts as a local source or sink of parallel rotation. The physics of turbulent acce-

leration is intrinsically different from the Reynolds stress. For symmetry breaking by positive intensity

gradient, a positive turbulent acceleration, i.e., cocurrent rotation, is predicted. The turbulent acceleration

is independent of mean rotation and mean rotation gradient, and so constitutes a new candidate for the

origin of spontaneous rotation. A quasilinear estimate for ion temperature gradient turbulence shows that

the turbulent acceleration of parallel rotation is explicitly linked to the ion temperature gradient scale

length and temperature ratio Ti0=Te0. Methods for testing the effects of turbulent parallel acceleration by

gyrokinetic simulation and experiment are proposed.
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Problems of spontaneous flow generation, spin-up, and
formation of differential rotation are ubiquitous in physics.
Examples of these include, but are not limited to, the origin
of the solar differential rotation [1], the formation of
the atmospheric jet stream [2], the mechanism of spin up
of a stratified fluid in a container [3], the formation of the
solar tachocline [4], and the origin of intrinsic rotation in
tokamak plasmas [5]. Many instances of spontaneous flow
generation occur in a state of eddy or wave turbulence, and
thus qualify as problems in the self-organization of flow
patterns in turbulence [6]. This type of problem has con-
siderable overlap with the classic paradigm of the turbulent
magnetic dynamo [7]. Theoretical approaches to the ques-
tion of flow self-organization are usually based on mean
field theory methods. Examples include the anisotropic
kinetic alpha effect [8] and the closely related lambda
effect [9], both derived from mean field hydrodynamics.

Spontaneous (or, intrinsic) plasma rotation is an example
of a spin-up process and is of great interest in magnetic
fusion [10]. Plasma rotation is thought to play an important
role in stabilizing macroscopic magnetohydrodynamic
instabilities, such as resistive wall modes [11], and in reduc-
ing or regulating microturbulence and the associated losses.
Intrinsic rotation is particularly important for International
Thermonuclear Experimental Reactor, which cannot be
adequately penetrated by conventional neutral beam injec-
tion, and so cannot achieve sufficient neutral beam injection
driven rotation. Realization of this has driven intensive
research in spontaneous rotation in the magnetic fusion
energy community in recent years [12,13]. The associated
theoretical research has also focused on mean field
approaches to calculating the parallel rotation profile by
Reynolds stress modeling, specialized to the complex ge-
ometry of tokamak plasmas [14]. Interestingly, just as the

solar differential rotation is thought to arise from heat flux
driven convective turbulence in a rotating system, sponta-
neous tokamak rotation is thought to arise from heat flux
driven drift wave turbulence in a helical magnetic field [15].
In this Letter, we propose a newmechanism for the origin

of spontaneous rotation in tokamaks. This mechanism is
turbulent acceleration, and arises from the partially acoustic
character of drift-ion temperature gradient turbulence. This
mechanism does not arise from a Reynolds stress or from
momentum transport, and thus has no antecedent in previous
work on themean field theory of rotation or flow generation.
Momentum transport can influence plasma rotation.

The general parallel momentum transport equation per
ion mass can be written as

@hnUki
@t

þr � �r;k ¼ Mk; (1)

where �r;k is the radial flux of parallel momentum, and

Mk is the turbulent momentum source or sink. The basic

form of the momentum flux is given by �r;k ¼ hnih~vr
~Uki þ

h~vr~nihUki þ h~vr~n ~Uki [16]. Here, the parallel Reynolds

stress is�r;jj ¼ h~vr
~Uki, including diffusion, velocity pinch

[17], and residual stress �res
r;k, which has been intensively

investigated [14]. In particular, the residual stress is one
component of the parallel Reynolds stress which is not
proportional to either flow or flow gradient. It is thought
to be the origin of intrinsic torque, since it contributes a
term which is proportional to r ��res

r;k to the parallel mean

flow equation. This term contributes an intrinsic torque
�r ��res

r;k, which can accelerate the plasma.

Although the most natural quantity for theoretical study
is toroidal angular momentum density, the quantity mea-
sured and estimated from experimental observation is the
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toroidal ion velocity U�. The magnitude of U� can be

approximated by Uk for tokamaks, since the toroidal field

is much lager than the poloidal field. To explicitly link
theoretical results to experimental observations, it is more
convenient to investigate the evolution equation of parallel
velocity rather than that of parallel momentum density.
In general, the mean parallel velocity evolution equation
can be written as

@hUki
@t

þr ��r;k ¼ ak; (2)

where �r;k is the parallel Reynolds stress, and ak is the

turbulent acceleration. In this Letter, we identify a turbu-
lent acceleration term which cannot be written as a diver-
gence of a Reynolds stress. It enters the rhs of the parallel
rotation equation, and follows from gyrokinetic theory.
The turbulent acceleration significantly affects parallel
rotation, but its physics is fundamentally different from
that of the residual stress. The residual stress is one com-
ponent of the parallel Reynolds stress, so it enters into the
rotation equation via its divergence, while turbulent accel-
eration is a local source or sink. We note that this difference
is somewhat analogous to the difference between the tur-
bulent energy pinch [18] (one component of the heat flux)
and turbulent heating [19]. Just as the pinch and the turbu-
lent heating, the turbulent acceleration and the turbulent
residual stress also coexist and both are relevant to sponta-
neous parallel rotation. Therefore, investigation of the
parallel turbulent acceleration is meaningful as well as
potentially important.

We start from the nonlinear electrostatic gyrokinetic
equation, in the continuity form [20]

@

@t
ðFB�Þ þ r �

�
dR

dt
FB�

�
þ @

@vk

�
dvk
dt

FB�
�
¼ 0; (3)

for which gyrocenter equations of motion are

dR

dt
¼ vkb̂þ c

eB� b̂�
�
erhh��ii þ�rBþmiv

2
kb̂ � rb̂

�
;

(4)

and

dvk
dt

¼ � B�

miB
� � ðerhh��ii þ�rBÞ: (5)

Here, F ¼ FðR; �; vk; tÞ is the gyrocenter distribution

function, � is the gyrocenter magnetic moment, B� ¼
Bþ vkr � b̂, B� ¼ b̂ �B� is the Jacobian of the trans-

formation from the particle phase space to the gyrocenter
phase space, and hh� � �ii denotes gyroaveraging.

By taking the moments of the nonlinear gyrokinetic
equation, we obtain the equation for gyrocenter density,
n � ð2�=miÞ

R
d�dvkFB�,

@

@t
nþr � ½ðUkb̂þ vE�B þ vd� þ vdrÞn� ¼ 0; (6)

and the equation for gyrocenter parallel momentum per ion
mass, nUk � ð2�=miÞ

R
d�dvkFB�vk,

@

@t
ðnUkÞ þ r �

�
Pi

mi

b̂þ ðvE�B þ 3vd� þ vdrÞnUk
�

¼ �
�
e

mi

b̂ � r��þ c

B
b̂� ðb̂ � rb̂Þ � r��Uk

�
n: (7)

Here, a long wavelength approximation k2?�
2
i � 1

is used, Pi¼2�
R
d�dvkFB�ðvk�UkÞ2¼ð2�=miÞ�R

d�dvkFB��B is the ion pressure, vE�B¼cb̂�r��=B

is the fluctuatingE� B drift velocity, vd� ¼ cTi=ðeBÞb̂�
ðb̂ � rb̂Þ is the magnetic curvature drift velocity, and

vdr ¼ cTi=ðeB2Þb̂�rB is the magnetic gradient drift
velocity. By summing Eq. (7) over all species and using
the quasineutrality equation, a total momentum conser-
vation equation can be obtained. We do not present it in
this Letter, since gyrokinetic momentum conservation has
already been discussed in detail in several recent works
[21,22]. On one hand, the off-diagonal component of the
electric part of the Maxwell stress tensor, �E

r;k / ~Er
~Ek,

coming from the polarization density [21], can easily be
recovered. It plays a similar role to the usual residual stress,
which also enters the total momentum equation, via its
divergence. On the other hand, the time variation of toroi-
dal momentum density due to E�B drifts [22] should
be absent here, because the parallel component of E�B
vanishes. The terms on the rhs of Eq. (7) are consistent with
the turbulent toroidal—rather than parallel—momentum
source in Ref. [23]. This comes from the parallel electric
field, along with the effective magnetic field B�=B�. It
should be noted that spontaneous rotation does not contra-
dict momentum conservation. The first is mainly carried
by ions, while the second follows from the sum over the
momenta of all species and the field momentum.
To obtain a more experimentally relevant quantity, the

focus of this work is parallel ion rotation velocity, but
not parallel momentum conservation or the ion parallel
momentum.We subtract Eq. (6) from Eq. (7), and so obtain
the ion parallel flow velocity equation

@

@t
Uk þ r � ½ðvE�B þ 4vdrÞUk�

¼ �
�
2vdr � rn

n
� e

Ti

vdr � r��� 2vdr � rTi

Ti

�
Uk

� 1

mi

b̂ �
�
er��þ 1

n
rPi

�
: (8)

In low-� plasmas, b̂� ðb̂ � rb̂Þ ’ ð1=BÞb̂�rB, so the
magnetic curvature drift can be approximated as the
magnetic gradient drift, i.e., vd�’vdr. Note that the drift
velocities are compressible in toroidal geometry.r�vE�B’
2ðe=TiÞvdr�r�� and r � vdr ¼ vdr � ðrTiÞ=Ti are used
when deriving the preceding equation. The parallel
(toroidal) velocity evolution equation was also studied in
[24,25] from reduced magnetohydrodynamic equations
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and Braginski fluid equations, respectively. However, ion
pressure gradient along the toroidal direction was ignored
in [25]. Both these works focused on magnetic geometric
effects on rotation, which is different from the emphasis
of our work. In particular, the key effect of our study is not
a toroidal effect, but rather is related to parallel pressure
gradients (i.e., acoustics).

The mean parallel velocity equation can be derived by
taking a flux surface average of Eq. (8), i.e.,

@

@t
hUki þ r ��r;k ¼ ak: (9)

As mentioned before, �r;k is the parallel Reynolds stress,
which has been intensively studied in previous work.
In this Letter, we focus on the rhs of Eq. (9), ak, the parallel
turbulent acceleration. It can be written as

ak ¼ 1

min0
h�nb̂ � r�Tii � 2

�
�Ti

Ti

vdr � r�n

n0

�
hUki

þ
�
�Ukvdr � r

�
e��

Ti

� 2
�n

n0
� 2

�Ti

Ti

��
: (10)

Note that this turbulent acceleration term cannot be
written as a divergence of a parallel Reynolds stress. It
plays the role of local source or sink of parallel rotation,
and so is significant for parallel rotation. In particular,
the first term in the turbulent acceleration is related to
gyrocenter density fluctuations and ion temperature
fluctuations, but is independent of the parallel velocity.
Therefore, it can provide a net drive for spontaneous
parallel rotation without any external momentum input.
However, the physics is fundamentally different from the
intrinsic torque induced by residual stress which enters
the parallel rotation equation via the term �r ��res

r;k.
We also note that the first term results from the parallel
ion pressure gradient, and so is related to ion acoustic
dynamics. The origin of this turbulent acceleration is
different from that of the turbulent momentum source
in Ref. [23], which resulted from the toroidal electric
field. The first term always exists, whether the geometry
is toroidal or cylindrical. This is different from the toroi-
dal effects discussed in [24,25]. However, the other two
terms come from the correction to the parallel direction
along the background magnetic field, due to toroidal
geometry effects. These are subdominant to the first
term. Thus, we focus only on the ion acoustic related
turbulent acceleration in the following discussion.

We present a quasilinear estimation of the parallel ac-

celeration, ak	v2
thih�n̂b̂�r�T̂ii, where vthi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ti0=mi

p
is

the ion thermal velocity, �n̂ ¼ �n=n0, and �T̂i ¼ �Ti=Ti0.
For simplicity, an adiabatic electron response is assumed,

i.e., �n̂ ¼ e��=Te0 ¼ ���̂, with � ¼ Ti0=Te0 and ��̂ ¼
e��=Ti0. Therefore, the temperature ratio dependence
will be introduced in the quasilinear expression of the
turbulent acceleration. The ion temperature fluctuations

can be obtained by linearizing the ion temperature evolu-
tion equation [16] as follows:

� i

�
!k � 14

3
!di;k þ ij 4!kj

�
�T̂i

¼ i!�Ti��̂k � i
4

3
!di;kð�n̂k þ ��̂kÞ; (11)

where !�Ti ¼ �k	�ivthi=LTi is the ion diamagnetic
drift frequency, with LTi ¼ �ð@ lnTi=@rÞ�1 as the ion
temperature gradient scale length, !di 	 �k	�ivthi=R0

as the ion magnetic drift frequency, 4!k as the E�B
nonlinearity-induced self-decorrelation rate, and the abso-
lute value of 4!k is required by causality. Combining the
density fluctuations and the ion temperature fluctuations,
the turbulent acceleration can be written as

ak 	 �v3
thi

�i

LTi

X
k

ð<�ckÞ
�
1� 4

3
ð1þ �ÞLTi

R0

�
kkk	hj��̂kj2i;

(12)

where �ck ¼ ½�ið!k � ð14=3Þ!di;k þ ij 4!kjÞ��1 is in-

verse of the ion propagator, and < means real part. Since
LTi is small in comparison with the major radius R0, the
second term in Eq. (12) is subdominant. In the following,
we keep only the first term, which comes from the ion
diamagnetic drift.
Note that nonzero turbulent acceleration also requires

parallel symmetry breaking as does the residual stress in
the parallel Reynolds stress. Various cases of parallel
symmetry breaking mechanisms for the residual stress,
such as E�B shear [26], intensity gradient [27], etc.,
have been studied. In toroidal geometry, k	¼m=r and
kk¼k	xŝ=ðqR0Þ, where ŝ is the magnetic shear, x ¼
rm;n � r, and rm;n is the radial location of the resonant

surface. Proceeding as in the study of the residual stress

caused by intensity gradient, i.e., IkðxÞ ¼ j��̂kj2ðxÞ ¼
Ikð0Þ þ xð@Ik=@xÞ [27], it follows that the turbulent accel-
eration can be written as

ak 	 �v3
thi

�i

LTi

ŝ

qR0

X
k

ð<�ckÞk2	x2
@Ik
@x

: (13)

For ŝ > 0, a positive (negative) intensity gradient results
in a positive (negative) parallel turbulent acceleration,
and a cocurrent (countercurrent) rotation is thus driven
by this effect.
To elucidate the magnitude of the turbulent acceleration,

we compare it to the divergence of the residual stress
r ��res

k and to the divergence of the diffusive velocity flux

r�ð
krhUkiÞ. We claim there are the appropriate compari-

sons, as the effects are all dimensionally similar, and scale
as the rate of change of velocity. For symmetry breaking

by intensity gradient, the residual stress is given by �res
k ¼

v3
thi

ŝ
qR0

P
kð<�ckÞk2	�ix

2@Ik
@x [27]. Thus, the ratio of the turbu-

lent acceleration to the divergence of the residual stress is
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ak=r ��res
k � �L=LTi

: (14)

Here, L is the length scale of variation of the residual
stress, which can vary between LTi

and LI, with LI ¼
ðð@Ik=@xÞ=IkÞ�1 being the intensity gradient scale length.
We see that the two contributions to the intrinsic torque
are roughly comparable, depending upon � and L=LTi

.

Comparing ak to the turbulent diffusive velocity decay rate


khUki=L2
v (corresponding to diffusive velocity confinement

rate hUki=�k, where 1=�k � 
k=L2
v) gives

akL2
v


khUki ¼
L2
v42

�iLTi
LsLI

�
vthi

hUki : (15)

Here, Lv is the scale length of the parallel flow gradient,
Ls is the magnetic shear scale length, and 
k ¼P

kð<�ckÞk2	�2
i v

2
thiIk is the turbulent diffusivity of parallel

flow. For the particular case vthi=hUki � a=�i and

Lv � LTi
� a, Eq. (15) reduces to ðakL2

vÞ=ð
khUkiÞ �
�ð42=LsLIÞða2=�2

i Þ. This ratio is roughly an order of unity.
Wehave shown that the turbulent acceleration is qualitatively
different from, but is quantitatively comparable to, the diver-
gence of the residual stress and the divergence of the diffu-
sive flux. Therefore, it is necessary to include the turbulent
acceleration for the study of parallel rotation.

One important question concerning turbulent acceleration
is how the theory can be tested by numerical simulations.
The crux of this issue is that while the total local intrinsic
torque density �I can be measured directly [28]—by nu-
merical cancellation experiments [29] or other means—it is
not so clear how to distinguish residual stress and accelera-
tion contributions, since �I ¼ �r ��res

k ðrÞ þ akðrÞ. To this
end, we propose a comparison between integrated intrinsic
torque, as a measure for the cases of (i) vanishing fluctua-
tions on the boundary [i.e., ��ð
aÞ ¼ 0] and (ii) finite
boundary fluctuations [��ð
aÞ � 0]. This choice follows
from the observation that the radially integrated intrinsic
torque is given by

TI ¼
Z a

�a
�IðrÞdr ¼ ��res

k ðrÞja�a þ
Z a

�a
akðrÞdr: (16)

Note that TI � 0 is required for a net spin-up. For the case
of vanishing turbulence on the boundary, TI ¼

R
a
�a akðrÞdr,

so a finite value can result only from turbulent acceleration,
and thus TI constitutes a direct measure of the integrated
turbulent acceleration. However, for a corresponding case
with ��ð
aÞ � 0, but other quantities (i.e., parameters,
profiles, etc.) the same, TI has contributions from both the
residual stress on the boundary and the radially integrated
ak. Subtracting the results for

R
a
�a �IðrÞdr for the two cases

could suggest a trend which reveals the residual stress con-
tribution. Note that ak and�res

k both depend upon the same

spectral cross-correlator and the same symmetry breaking
mechanism. This comparison should separate at least the
radially integrated contributions to the intrinsic torque

from �res
k . Since it is a comparison of radially integrated

quantities, it should not be very sensitive to turbulence
spreading near the boundary and related phenomena.
Finally, truth in advertising compels us to say that this test
will elucidate only the radially integrated ak, but not the
local profile of ak. Further consideration is required to

address that.
Of course, a second important question is how to mea-

sure ak and thus test the theory in a physical experiment. To

this end, we note that the presence of ak necessarily breaks
the condition of zero total velocity flux (i.e., Reynolds
stress) in a steady state of intrinsic rotation. Thus,
@hUki=@t ¼ �@rh~vr

~Uki þ ak and stationarity imply

h~vr
~Uki ¼

Z r

0
dr0akðr0Þ; (17)

so that a finite value of h~vr
~UkiðrÞ implies

R
r
0 dr

0akðr0Þ � 0,
i.e., a finite value of the radially integrated turbulent
acceleration. The parallel Reynolds stress h~vr

~Uki could be

measured directly by a number of means, such as Mach
probes (at the edge) [30] or beam emission spectroscopy
velocimetry [31] using an image in the r-parallel plane.
We note that this would be a challenging new application
of beam emission spectroscopy, which so far has been
used only for velocimetry measurement of h~vr~v	i [32].
Given the daunting prospect of measuring h~vr

~Uki, we offer
a second, purely macroscopic test. Using the condition of
stationarity and the total velocity balance condition, we
have the jump condition

rhUkijrþ4r
r ¼

 
�res

k

k

þ VpinchhUki

k

�
R
r
0 dr

0akðr0Þ

k

!
rþ4r

r

:

For smoothly varying profiles and 
k, Vpinch, and �res
k , it

follows that rhUkijrþ4r
r ffi �R

rþ4r
r dr0akðr0Þ=
k � �4 r

�ak=
k. Here, 
k could be approximated by 
i, determined

independently. To assure smoothness, 4r must be smaller
than the scale of possible variation of �res

k , Vpinch, etc.

In practice, this surely is satisfied if 4r < LI, a typical mes-

oscale. TakingLI�ð�iLTi
Þ1=2, for�i�0:1cm,LTi

� 50 cm,

one can have4r & 2:24 cm. Thus, present day high resolu-
tion beam blip charge exchange recombination spectroscopy
measurements [33] should have sufficient accuracy for this.
Note that the key point here is that the fastest varying con-
tribution to rhUki on mesoscales comes from

R
r
0 dr

0akðr0Þ.
Observe that for sufficiently small 4r, this method gives an
effectively local measurement of ak.
In summary, we discovered a turbulent acceleration term

in the parallel rotation equation by a calculation based on
the gyrokinetic equation. The turbulent acceleration cannot
be written as a divergence of the parallel Reynolds stress,
which is similar to the turbulent momentum source found
independently in Ref. [23]. It has different physics from
the residual stress, which enters the rotation equation as a
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divergence. In particular, the fact that the residual stress
contributes a divergence term to the rotation equation
means that its effect on net rotation enters via its value at
the edge. In contrast, parallel acceleration can be distrib-
uted throughout the entire cross section and is not particu-
larly edge sensitive. A new candidate mechanism for the
origin of spontaneous rotation is thus revealed. We pro-
posed a method for testing the effects of turbulent parallel
acceleration by gyrokinetic simulation based on the differ-
ence between the turbulent acceleration and residual stress.
We also proposed a direct experimental test to determine
the relative contributions from �res

k and ak.
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